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Introduction

When viewing objects, primates use a combination of saccadic and pursuit eye

movements to stabilize the retinal image of the object of regard within the high-acuity

region near the fovea. Although these movements involve widespread regions of the

nervous system, they mix seamlessly in normal behavior. Saccades are discrete

movements that quickly direct the eyes toward a visual target, thereby translating the

image of the target from an eccentric retinal location to the fovea. In contrast, pursuit is a

continuous movement that slowly rotates the eyes to compensate for the motion of the

visual target, minimizing the blur that can compromise visual acuity. While other

mammalian species can generate smooth optokinetic eye movements - which track the

motion of the entire visual surround - only primates can smoothly pursue a single small

element within a complex visual scene, regardless of the motion elsewhere on the retina.

This ability likely reflects the greater ability of primates to segment the visual scene, to

identi_ individual visual objects, and to select a target of interest.
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residues). For some cases, such methods are comparable to
non-network methods which use statistically derived energy

functions (Rost and Sander, 1994b).

Discussion

.Neural networks can be used for predicting structural features of

proteins. There were at least 50 articles on the application
of neural networks for protein structure prediction until 1993.

One message of the literature is convincing: neural networks

can be used to predict secondary structure, structural class,

family relations, surface exposure, functional motifs, distance

matrices, and even the 3D structure of proteins.

Neural network methods are seldom superior to non-network ap-

proaches. The second message of the literature is that net-
works are superior to alternative techniques, but this answer is

not convincing! The general problem is a lack of rigor in evalu-

ating results. A common example is the allowance of significant

sequence identity between test and training set. Any evaluation
that allows for sequence identity has to be compared to homo-

logy modeling. And in this comparison, all prediction methods
are clearly inferior. The conclusion is that neural network ap-

plications have almost never yielded significant improvements
over current techniques (Hirst and Sternberg, 1992). An excep-

tion is a network that uses evolutionary information to predict

secondary structure (Rost and Sander, 1994a). So far, this is

the only example for a neural network prediction of protein

structure being clearly superior to alternative techniques.

Neural network predictions have not been made sufficiently avail-

able to biochemists. Unfortunately, the tendency to overesti-

mate the performance accuracy of network prediction has not

contributed much to their acceptance by biochemists. Another

problem is that almost none of the network methods is publicly

available to those researchers who need predictions.

Neural network techniques will continue to be useful for the pre-

diction of protein structure. First, the problem of predicting
protein structure is far from solved. For a sequence of un-

known 3D structure for which no homology to a known fold

can be detected, the best one can achieve today is a more or less

reliable prediction of secondary structure, surface exposure, or

functional class. Second, the constantly growing data banks

provide an increasing body of information about protein struc-

ture. Chances are that methods based on data bank analysis

will be the first to practically solve the prediction of protein
3D structure. Third, neural networks might be well suited for

appropriately incorporating the increased information. Using

evolutionary information will be one way to improve predic-

tions by networks. Neural network applications can become

increasingly important for the research of tomorrow's molecu-

lar biology, provided that testing is done with care and that

methods become available to potential users.

Road Map: Applications of Neural Networks
Background: 1.3. Dynamics and Adaptation in Neural Networks
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Pursuit Eye Movements
Richard J. Krauzlis

Introduction

When viewing objects, monkeys and humans use a combina-

!ion of saccadic and pursuit eye movements to keep the retinal

lraage of the object of regard within the high-acuity region near
the fovea. While these movements mix seamlessly in normal

behavior, their properties and origins are quite distinct. Sac-

Cades are ballistic movements that quickly direct the eyes to-

ward a visual target, thereby translating the image of the target
from an eccentric retinal location to the fovea. In contrast,

pursuit is a continuous movement that slowly rotates the eyes

to compensate for any motion of the visual target, minimizing

the drift of the target's image across the retina that might oth-

erwise compromise visual acuity. While other mammalian spe-

cies can generate smooth optokinetic eye movements--which
track the motion of the entire visual surround--only primates
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cansmoothlypursueasingleelementofacomplexvisualscene,
regardlessof themotionthiscauseselsewhereontheretina.
Pursuiteyemovementsthereforerepresentaspecializationof
theprimatecentralnervoussystem.

Basic Features of Pursuit Behavior

The basic features of pursuit can be illustrated by considering
the ramp paradigm (Figure 1), in which a target initially at rest

moves at a constant speed. The onset of target motion is often

accompanied by a step, eliminating the need for a catch-up
saccade (Rashbass, 1961). The eye velocity records obtained

with this paradigm can be divided into distinct phases. During

the latent phase (1), the target is moving, but the eyes have not

yet begun to move. During the initiation of pursuit (2), the eye

accelerates at a nearly constant rate related to the image speed

experienced during the latent phase. This is followed by a tran-

sition phase (3), as eye velocity continues to increase and often

overshoots target velocity slightly. During sustained pursuit

(4), eye velocity either settles to a steady-state value or oscil-

lates around a value near target velocity.

The ramp paradigm also indicates several of the constraints
associated with the pursuit system. First, because the retina is

part of the eye, there is a reciprocal relationship between the

motion of the target's retinal image and the motion of the eyes.
During the latent phase, image velocity (the difference between

target and eye velocities) is equal to target velocity. After the
latent phase, image velocity decreases and then remains near

zero during sustained pursuit. Pursuit is therefore organized as

target

12 3 4,

mosclef
///eye position k£ _

' 500 ms i

Figure I. B'asic features of pursuit can be seen with the ramp paradigm.
The target jumps to a slightly eccentric position and moves at a con-

stant speed of 20 degrees per second that is matched by the subject's
eye movement after a few hundred milliseconds.

a negative-feedback system: the eye movement output of the

system acts to reduce the visual motion input to the system
(Robinson, 1981).

Another constraint is imposed by the delay (apProximately
100 ms) associated with sensory and motor processing. Cona.

bined with negative feedback, this delay could make the system
unstable; in fact, under certain conditions, pursuat does exhibit

large amplitude oscillations. To compensate for this constraint,
the pursuit system uses a combination of short- and long-term

predictive mechanisms. For example, it is believed that the mo-
tor pathways for pursuit include a circuit that retains the cur.

rent value of pursuit eye speed. This velocity integrator repre-
sents a form of short-term prediction and can maintain pursuit

eye speed in the absence of vision. Visual inputs (like image
velocity in Figure 1) indicate how eye speed should change, and
are best related to eye acceleration during pursuit.

Finally, the pursuit system must provide a steadily increasing
muscle force (Figure 1) to produce a constant-speed eye move-

ment. The required muscle force increases in parallel with eye

position as a function of time and can be approximated by
taking the mathematical integral of desired eye speed. This pro-

cess of integration is believed to be common to all eye move-
ments and is accomplished by a position integrator contained

within the brainstem (Cannon and Robinson, 1987). In addi-

tion, the pursuit system compensates for the mechanical as-

pects of the oculomotor plant--the inertial mass of the eye and

the visco-elastic properties of the eye muscles. As indicated by

the offset between muscle force and eye position, the applied
force begins with an additional increment to overcome the

sluggish dynamics of the eye (Robinson, 1965). Without this

pre-emphasis, it would take three to four times as long for eye

speed to match target speed. The neurons innervating the eye

muscles during pursuit therefore provide an "inverse dynam-

ics" version of the eye movement command--a signal which,
after it is transformed by the eye plant, produces the desired

eye motion.

Models of Pursuit

Current models of pursuit vary in their organization and in the

features of pursuit that they are designed to reproduce. How-

ever, they are similar in that they are concerned with describing

pursuit behavior without explicit reference to the neural struc-

tures that might be responsible.

Image motion models (Figure 2A) focus on replicating in de-

tail the initial increase in eye velocity at the initiation of pur-

suit, the overshoot in eye velocity during the transition to sus-
tained pursuit, and the oscillations observed during sustained

pursuit (Krauzlis and Lisberger, 1989). The key feature of these

models is the presence of multiple visual inputs, which are de-

signed to reflect the complexity of the visual signals used to

drive pursuit. In these models, the temporal features of pursuit

eye movements (see Figure 1) are matched primarily by adjust-

ing the dynamics of the visual inputs, while the premotor pro-

cessing is simplified.

Target velocity models (Figure 2B) also can replicate the pro-
file of eye velocity as a subject initiates and maintains pursuit,

but they use a different structure (Robinson, Gordon, and

Gordon, 1986). The key feature of these models is the construc-

tion of an estimate of target motion by adding a copy of the eye
velocity output to the visual motion input. In these models, the

processing of visual inputs is greatly simplified, and the charac-

teristic features of pursuit are accomplished by the properties

of the premotor processing.
Despite the differences between these two classes of models,

they accomplish similar transformations of the input signal
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r_i,,ttre 2. Three classes of pursuit

_dels. The input to each model is

target speed; the output is eye speed.

The dashed lines indicate the physical

coupling of the eye and retina. A, Im-

age motion models include complex

processing of visual motion inputs for
pursuit. B, In target velocity models, a

p0sitive-feedback loop is used to con-
struct an internal estimate of target

velocity. C, In predictive models, the

output from a long-range predictive

mechanism provides an additional in-

put for pursuit.

A I
I

I _ velocity

target acceleraton

retina • I , = I' -_'. t

I t--_transient _ E'

pursuit

velocity
integration

I

I

I

motor

pathways

imB j
-- _ + pursuit pursuit

target pre-motor velocity

retina processing integration

I

I

1output
motor

pathways

eye

eye

I

- t i pursuit ___ pursuitprocessing integration

I Ipurso. I
I___. I predictive II mechanism

_ output

motor

pathways

I

I

I

eye

TJble I. Summary of Physiological Studies of Pursuit

Structure A. Lesions B. Electrical Stimulation C. Single-Unit Recording

1. VI

2. Extrafoveal MT

3. Foveal MT

4. MST

5. 7a, V1P

6. FEF

7. DLPN

8. DMPN, NRTP

9. NOT

10. LTN

ll. Ventral paraftocculus

12. Oculomotor vermis

Deficits in saccades and pursuit

Transient retinotopic deficits in the

initiation of pursuit

Deficits in initiating pursuit; deficits

for ipsilateral sustained pursuit

Deficits in initiating pursuit; deficits

for ipsilateral sustained pursuit

13. VN FN NPH

Deficits in sustained and predictive or

anticipatory pursuit

Deficits in initiating pursuit; deficits

for ipsilateral sustained pursuit

Deficits in pursuit

Deficits in ipsilateral tracking

Long-lasting deficit in pursuit

Long-lasting deficit in pursuit

Sustained deficits in pursuit and

Ipsilateral eye acceleration if applied
during sustained pursuit

Ipsilateral eye acceleration if applied

during sustained pursuit

Eye acceleration, often ipsilateral, if
applied during fixation or pursuit

Ipsilateral eye acceleration if applied

during sustained pursuit

Ipsilateral eye acceleration

Ipsilateral eye acceleration if applied
during fixation or pursuit

Evokes saccadic eye movements

Visual responses tuned for direction/

speed of small stimuli

Visual responses to motion of small
stimuli

Visual responses to motion of small or

large stimuli; nonvisual responses

Visual responses to stimulus motion;

nonvisual responses

Visual responses to stimulus motion
responses during tracking

Visual responses best for moving large

stimuli; nonvisual responses

Visual responses to large stimuli

Visual responses to large stimuli

Visual responses to large stimuli

Responses to eye and head velocity;
visual responses during pursuit

Responses to eye and head velocity,

passive visual responses

saccadic eye movements

Details of experimental findings can be found in several longer reviews (Eckmiller, 1987; Keller and Heinen, 1991; Krauzlis, 1994; Lisberger,

Morris, and Tychsen, 1987).
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and, with certain simplifying assumptions, can be shown to be

formally equivalent (Deno, Keller, and Crandall, 1989). How-

ever, structural differences between the models do have impli-
cations. For example, it has been observed that image motion

models can account for the altered pursuit found when the

delay in the visual feedback is changed, while target velocity
models cannot (Goldreich, Krauzlis, and Lisberger, 1992).

Predictive models (Figure 2C) address the role of prediction

in pursuit. These models cover a wide range of approaches, but

they share the feature of asserting that mechanisms other than

immediate processing of visual inputs are required to replicate

all features of pursuit behavior (Barnes, 1993). These mecha-

nisms often involve extracting and subsequently recognizing

patterns of target motion. This additional information can

supersede the effects of visual feedback and produce move-

ments that are not simply visual reflexes.

The Neural Pathways for Pursuit

The importance of both visual areas of the cerebral cortex and

oculomotor regions of the cerebellum have been clearly dem-

onstrated by experimental lesions (Table 1). These results sug-

gest that the cerebral cortex provides sensory inputs that the
cerebellum and premotor nuclei, in turn, convert into com-

mands for pursuit. However, several observations argue that

the conveyance of activity along the cortico-ponto-cerebellar

pathways does not constitute a straightforward progression

of visual signals toward commands for pursuit. For example,
some of the signals provided by the cerebral cortex are not

purely visual. Nonvisual signals have been demonstrated by
recording the activity of isolated units as a monkey continu-

ously tracks a target moving in the units' preferred direction.

When the target is briefly turned off, the response of neurons in

several regions continues unabated• Conversely, visual signals

have been recorded at the level of the cerebellum, in addition

to "motor" signals related to eye movements. Furthermore,

electrical stimulation of some sites produces pursuitlike move-

ments only if the subject is already engaged in pursuit)while

stimulation of other sites produces smooth movements whether

the subject is pursuing or fixating. These effects suggest that the

pursuit pathways contain a "switch" that governs the transmis-
sion of sensory and motor signals, an idea consistent with the

behavioral distinctions that can be drawn between pursuit and

other eye movements (Luebke and Robinson, 1988)•

Perspectives on the Neural Pathways for Pursuit

To illustrate the difficulties in drawing conclusions about the

overall organization of the neural pathways for pursuit, we

next consider how three particular structures--the floccul_tr

region, the oculomotor vermis, and extrastriate cortex--may
contribute to pursuit.

During sustained pursuit, floccular Purkinje cells (the cer-
ebeltar output neurons) show a continuous increase or decrease

in firing rate. This sustained activity is suggested to result from

the reciprocal connnections between the floccular region and

the premotor nuclei (Figure 3A). The loop formed by these

connections could provide the neural substrate for the pursuit

velocity integrator included in the pursuit models (see Figure 2).

Furthermore, these Purkinje ceils display transient responses to
moving stimuli that are the object of a pursuit eye movement,

but only modest responses to stimuli presented during fixation.

These transient responses at the initiation of pursuit may reflect

visual inputs to the floccular region that drive the initial accel-

eration of the eye (E) and are then incorporated through feed-

back into the sustained eye velocity command (E), analogous

flocculus

retina

pre-motor n.

B

cortico-pontine

retina I--

vermis

pre-motor n.

eye

C

cortico-pontine

retina D

t

cerebellum

f--'R ....

o
i
|
i
i

lli--
pre-motor n.

eye

eye

Figure 3. Three perspectives on the neural substrates for pursuit. A,
The output of the floccular region may represent a command for pur-
suit eye velocity (_) and eye acceleration (g). The broken line at
the output of the corticopontine pathways indicates that the pursuit
"switch" appears to lie upstream. B, The output of the vermis may
represent a neural reconstruction of target velocity. The pursuit
"switch" appears to lie downstream of the vermis. C, The output of the
corticopontine pathways may provide a signal that already encodes
target velocity and can be used directly by the premotor nuclei for
pursuit.

to the flow of signals in the image motion models (see Figure

2A). Another similarity is that this scheme does not include an

internal estimate of target motion.
Like the floccular region, the oculomotor vermis receives

a combination of visual and eye motion inputs (Figure 3B).

However, vermal Purkinje cells respond to moving stimuli pre-

sented during fixation or pursuit. This conditional linkage be-

tween activity in the vermis and pursuit eye movements, indi-

cated by the "switch" in Figure 3B, suggests that the vermis

may be part of a premotor circuit that provides a set of candi-

date signals for pursuit. As in the target velocity models (see
Figure 2B), the combination of visual and eye motion signals

may be used to construct an internal estimate of target motion.
In extrastriate cortex, there are several sites where eye move-

ment signals have been found in conjunction with visual rno-
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tionsignals,suchasthemedialsuperiortemporalarea(MST),
thefrontaleyefields(FEF),andtheposteriorparietalcortex.
Ablationoftheseareasleadstodeficitsinbothinitiatingand
sustainingpursuit.Theseresultssuggestthatcorticalinputs
maybesufficientto drivepursuitandthatthecriticalneural
pathwaymaybeadirectlinkbetweenthecerebralcortexand
thebrainstem(Figure3C).If thecriticalcomputationsforpur-
suitwereaccomplishedinthecerebralcortex,thepursuitdefi-
citsresultingfromcerebellarlesionsmightbeviewedasone
aspectofageneraldeficitinoculomotorcontrol.Forexample,
thecerebellummightbeimportantforcompensatingforthe
mechanicalpropertiesoftheeyeplant,a functionassociated
withtheoutputmotorpathwaysin thepursuitmodels(see
Figure2),whilethecerebralcortexmightcomputetheinternal
estimatesof targetmotionthatareusedto drivepursuit,a
functionassociatedwiththepredictiveorpremotorelementsin
thepursuitmodels.

Discussion

The aim of this article has been to draw parallels between be-

havioral, modeling, and physiological approaches to the study

of pursuit. The current challenge is to bridge the gap between

mathematical models and physiological data. Toward this end,

models of pursuit need to become more biomorphic; their or-

ganization needs to conform more closely to known anatomy,

and their components need to resemble more nearly actual neu-

rons. Conversely, physiological studies of pursuit should ex-

plicitly recognize the conceptual models underlying their design
and produce quantitative tests of those models.

Road Map: Primate Motor Control
Background: Motor Control, Biological and Theoretical
Related Reading: Cerebellum and Motor Control; Collicular Visuo-

motor Transformations for Saccades
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Radial Basis Function Networks
David Lowe

Introduction

The Radial Basis Function Network (RBFN) is conceptually a
very simple and yet intrinsically powerful network structure.

The radial basis function network constructs global approxi-

mations to functions using combinations of "basis" functions

"centered" around weight vectors (Figure I), whereas a multi-

layer perceptron constructs an architecture out of separating
hyperplanes. An extra distinction is that the radial basis func-

tion employs a distance function to convert the vector input

pattern into a scalar at the hidden layer, as opposed to a vector

dot product. The network's strength derives from a rich inter-
pretational foundation, since it lies at the confluence of a vari-

ety of "established" scientific disciplines. Thus, although the

original motivation of this particular network structure was

in terms of functional approximation techniques, the network

may be "derived" on the basis of statistical pattern processing
theory, regression and regularization, biological pattern forma-

tion, mapping in the presence of noisy data, and so on. How-

ever, in addition to exhibiting a range of useful theoretical

properties, it is above all a practically useful construct as it

a Y

%ias node

(i=o)

Figure 1. The basic radial basi's function structure. There is a nonlinear
basis function _j(... ) centered around each hidden node weight vector

which also has a (possibly) adaptable "range of influence" aj. The
output of the hidden node j, hj is given as a radial function of the

distance between each pattern vector and each hidden node weight

vector, hj = _/([kx -_j}[/o_). This is the main difference from a multi-
layer perceptron. The network outputs are evaluated by a traditional
scalar product between the vector of hidden node outputs and the
weight vector attached to output node k, as ok = h. 2_.


